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Abstract. We study a simple model of unsupervised learning where the single symmetry breaking
vector has binary components±1. We calculate exactly the Bayes-optimal performance of an
estimator which is required to lie in the same discrete space. We also show that, except for very
special cases, such an estimator cannot be obtained by minimization of a class of variationally
optimal potentials.

Statistical mechanics techniques have been used with success to study and understand key
properties of inferential learning [1,2]. This approach provides explicit and detailed results that
are in many ways complementary to the more general results obtained by statistics. The case of
non-smooth problems, in which the parameters that have to be estimated take discrete values,
is of particular interest. On the one hand, many of the results from statistics can no longer
be applied, while on the other, the estimation of these parameters is often a computationally
hard problem. In this paper, we present a detailed analysis of a simple model of unsupervised
learning [3–8], involving a single symmetry breaking vector with binary components±1 and
highlight the differences with the case of smooth components. In particular, we compare the
results from Gibbs learning and Bayes learning with the ones for the best binary vector and a
vector which minimizes a variationally optimal potential.

The problem is as follows:p N -dimensional real patterns{ξµ,µ = 1, . . . , p} are sampled
independently from a distributionP(ξµ|B) ∼ δ(ξµ · ξµ − N) exp[−U(B · ξµ/√N)] with
a single symmetry breaking directionB. The functionU modulates the distribution of the
patterns alongB. We will focus on the properties in the thermodynamic limitN → ∞,
p →∞ with α = p/N finite. One then finds that the normalized projectiont ≡ B · ξ/√N
is distributed according to (N being a normalization constant)

P ∗(t) = N√
2π

exp

{
− t

2

2
− U(t)

}
(1)

while projections on any direction orthogonal toB are normal. The case of a so-called
spherical prior, in whichB is chosen at random on the sphere with radius

√
N , was discussed

in [6–8]. As announced earlier, we focus here on the more complicated situation in which the
components ofB take binary values±1. Theprior distribution is now given by

P(B) ≡ Pb(B) =
N∏
j=1

[ 1
2δ(Bj − 1) + 1

2δ(Bj + 1)]. (2)
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The goal of unsupervised learning is to give an estimateJ of B. One way to do so is
to sampleJ from a Boltzmann distribution with HamiltonianH(J) = ∑p

µ=1V (λ
µ), with

λµ ≡ J · ξµ/√N , at temperatureT = β−1, for an appropriate choice of thead hocpotential
V [9]. The properties of such aJ-vector can be extracted from the partition function:

Z =
∫

dJ Pb(J)e
−βH(J). (3)

The latter is a fluctuating quantity due to the random choice of the patterns, but the free energy
per componentf = −(Nβ)−1 lnZ is expected to be self-averaging in the thermodynamic
limit and can therefore be calculated by averaging over the pattern distribution with the aid of
the replica trick [10]. Assuming replica symmetry (RS), one finds

f = 1

β
Extr
R,q,R̂,q̂

{
1

2
(1− q)q̂ + R̂R −

∫
Dz ln cosh(z

√
q̂ + R̂)− α

∫
D∗t

∫
Dt ′

× ln
∫

dλ√
2π(1− q) exp

(
− βV (λ)− (λ− t

′√q − R2 − tR)2
2(1− q)

)}
(4)

whereD∗t = dt P ∗(t) andDt ′ = dt ′ (2π)−1/2 exp(−t ′2/2). The extremum operator gives
saddle point equations which determine the self-averaging value of the order parameters. As
usualq can be interpreted as the typical mutual overlap between two samplesJ andJ ′,
q = J · J ′/N , while the performanceR measures the proximity between the estimateJ and
the ‘true’ directionB,R = J ·B/N . For even functionsU , there is no distinction betweenB
and−B, and a symmetryR→−R arises. In the following, onlyR > 0 will be considered.

As a first application of equation (4), we turn to Gibbs learning [5,11,12]. It corresponds
to sampling from the posterior distribution and is realized by takingβ = 1 andV = U in
equation (4) (for more details, see [6]; for the estimation ofU , see [13]). In agreement with the
fact that one cannot make a statistical distinction betweenB and its Gibbsian estimateJ , one
finds that the order parameters satisfyqG = RG andq̂G = R̂G, where the subscriptG refers
to Gibbs learning. This observation allows us to simplify the saddle point equations further,
and the Gibbs overlap is found to obey the following equation:

RG = F 2
B

(
F
(√
RG

))
(5)

with

FB(x) =
√∫

Dz tanh(zx + x2) and F(R) =
√
α

∫
Dt
Y 2(t;R)
X(t;R) (6)

and

X(t;R) =
∫
Dt ′Ne−U(Rt+

√
1−R2t ′) Y (t;R) = 1

R

∂

∂t
X(t;R). (7)

Note thatFB comes from the entropic term of the free energy and does not depend onU , as
opposed toF ,X andY .

ForRG small, one obtains from equations (5)–(7), upon assuming a smooth behaviour as
a function ofα, that (

∫
D∗tf (t) = 〈f (t)〉∗):

〈t〉∗ 6= 0⇒ RG ' α〈t〉2∗ (8)

〈t〉∗ = 0⇒ RG

{
= 0 α 6 αG
' C(α − αG) α > αG

(9)

with critical loadαG = (1 − 〈t2〉∗)−2. These results are identical to those for a spherical
prior [8]. In particular, one observes the appearance ofretarded learningwhen the distribution
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has a zero mean along the symmetry breaking axis. In the regimeRG→ 1, on the other hand,
one finds an exponential approach:

1− RG(α) α→∞'
√

π

2α〈(U ′)2〉∗ exp

(−α〈(U ′)2〉∗
2

)
(10)

whereU ′ ≡ dU(t)/dt . This is now different from the case of a spherical prior, where the
approach is following an inverse power law 1− RG ∼ α−1 [8]. The difference becomes even
more pronounced whenU has singular derivatives, as is typically the case when a supervised
problem is mapped onto an unsupervised version [6]. Then one finds thatRG = 1 is attained at
afinitevalue ofα while 1−RG ∼ α−2 for a spherical prior, see [6,11] for an explicit example.

Apart from its intrinsic interest, Gibbs learning is also directly related to the Bayes optimal
overlap byRB =

√
RG, see [5,12,14]. This overlap is realized by the centre of massJB of the

Gibbs ensemble. A simple reasoning [5,12] shows thatJB maximizes the overlapR averaged
over the posterior distribution ofB. In order to exclude the caseJB = 0 (which would follow
in the presence of the symmetryB→−B), we will implicitly assume an infinitesimally small
symmetry breaking field in the Gibbs distribution.

Using the self-averaging of the mutual overlap, withqG = RG, the explicit form ofJB is
found to beJB = R−1/2

G Z−1
∫

dJ Pb(J)J exp{−∑µ U(λ
µ)}. In general, the components of

this centre of mass are continuous, while our prime interest here is in the optimal performance
attainable by a binary vector. The latter vector, which we will denote byJbb (for best binary),
can fortunately be easily obtained [1]: it is the clipped version of the centre of massJB , with
components(Jbb)j = sign((JB)j ).

To evaluate the overlap betweenJbb andB, we recall the following general result for the
overlapR̃ = J̃ ·B/N of a vectorJ̃ with transformed components̃Ji =

√
Ng(Ji)/

√∑
i g

2(Ji)

(with g odd andB binary) as a function of the overlapR of J with B (see [9] for details):

R̃ =
∫
P(x)g(x) dx

[
∫
P(x)g2(x) dx]1/2

(11)

whereP(x) is the probability density forx ≡ J1B1, which for the prior distribution equation (2)
is independent of the index due to the permutation symmetry among the axes. IfJ is sampled
from a spherical distribution (withB binary), thenP(x) is found to be a Gaussian [9] with
meanR and variance 1− R2.

In order to obtainP(x) corresponding to the centre of massJB , we evaluate the quenched
moments ofy = x√RG:

〈ym〉 =
〈(
Z−1

∫
dJ Pb(J)e

−∑µ U(λ
µ)J1B1

)m〉
. (12)

The average〈. . .〉 over the quenched pattern set can be performed by the replica trick with the
following replica symmetric result:

〈ym〉 =
∫
Dz

[
tanh

(
z

√
R̂G + R̂G

)]m
(13)

whereR̂G, which is determined by the saddle point equations of Gibbs learning, cf equation (5),
is found to beR̂G = F2(

√
RG). Recognizing equation (13) as a transformation of variables

y = tanh(z
√
R̂G + R̂G), with z normally distributed, one concludes† that

P(x) =
√
RG√

2πR̂G(1− RGx2)

exp

{
−1

2R̂G

[
1

2
ln

(
1 +
√
RGx

1−√RGx
)
− R̂G

]2
}
. (14)

† Equation (14) is consistent with the fact that the overlap for the centre of mass cannot be improved by a
transformation of its components. Indeed, the transformed overlapR̃ in equation (11) is maximized [9] by setting
gopt(x) = (P (x)− P(−x))/(P (x) + P(−x)), reducing for (14) togopt(x) ∼ x.
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Figure 1. 0, RB andRbb parametrized byRG, according to equations (5) and (15).

By applying equation (11), forg(x) = sign(x), with P(x) given by equation (14), one
finally obtains the following overlapRbb ≡ Jbb ·B/N of the best binary vector:

Rbb = 1− 2H(F−1
B (RB)) = 1− 2H(F(RB)) (15)

whereH(x) ≡ ∫∞
x
Dt . Equation (15) is a central result of this paper, providing an upper

bound for the performance of any binary vector. The asymptotics ofRbb can be obtained from
those ofRG = R2

B , yielding

Rbb
RG→0'

√
2RG
π

(16)

in the poor performance regime, and an exponential behaviour in the limit ofRG→ 1:

1− Rbb ' 2

π
(1− RG). (17)

We note that another quantity of interest, the mutual overlap0 ≡ JB · Jbb/N between the
centre of mass and best binary, can also be evaluated quite easily, leading to the simple result
0 = Rbb/RB . In the limit RG → 0 one recovers0 → √2/π , which is the result for the
overlap between a vector sampled at random from theN -sphere and its clipped counterpart.
0, RB andRbb are plotted as functions ofRG in figure 1.

We finally turn to the problem of a variationally optimized potential. In the case of a
spherical prior, it was shown that the Bayes-optimal performance can indeed be attained by
a vector that minimizes this potential [8, 15–17]. We now address the question of whether
the same procedure is successful in discrete space, a problem which has been also studied
in [18] for the supervised scenario. SinceJbb is a unique optimal binary vector, one would
like the desired potential to satisfy bothR = Rbb andq = 1. Proceeding again from the free
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energy equation (4) for a general potentialV , taking the limitsq → 1, β → ∞ with finite
c ≡ β(1− q), and rescaling the conjugate parametersĉ ≡ q̂/β2, ŷ ≡ R̂/β, one obtains the
following saddle point equations:

R = 1− 2H

(
ŷ√
ĉ

)
c =

√
2

πĉ
exp

(
− ŷ

2

2ĉ

)
ĉ = α

c2

∫
DtX(t;R)[λ0(t, c)− t ]2 ŷ = α

c

∫
DtY (t;R)[λ0(t, c)− t ]

(18)

whereλ0(t, c) ≡ Argminλ[V (λ)+(λ− t)2/2c]. The variational optimization ofR with respect
to the choice ofV can now be performed as in [8, 15–17] invoking the Schwarz inequality.
We only quote the final result for the resulting overlapRopt at the minimum of this optimal
potential:

Ropt = 1− 2H(F(Ropt)). (19)

The important issue to be examined is whether or notRopt(α) saturates the bound given by the
best binary. By comparison of equation (19) with (15), one immediately concludes that this
is not possible, as long asF is not a constant nor singular, sinceRopt = Rbb would imply that
F(Rbb) = F(RB), andRbb = RB is excluded by the first equality in equation (15). In general
one thus has thatRopt 6 Rbb, since∂F/∂R > 0. The equality is reached in asymptotic limits
and for a special case (see below). ForRopt ∼ 0 one has

〈t〉∗ 6= 0⇒ Ropt ' |〈t〉∗|
√

2α

π
(20)

〈t〉∗ = 0⇒ R

{= 0 α 6 αc
'
√
C ′(α − αc) α > αc

(21)

where the critical value now isαc ≡ παG/2. Furthermore, the approachRopt→ 1 is identical
to that ofRbb, 1− Ropt ' 1− Rbb. ThereforeVopt is successful only in the asymptotic limits
α → 0 andα →∞. Note that the second-order phase transition in equation (21) occurs at a
larger value ofα than for Gibbs learning.

The caseF(R) independent ofR, implyingRopt = Rbb, ∀α, arises in a simple Gaussian
scenario with a linear functionU [19]. In this case, the best binary corresponds to clipped
Hebbian learning. This seems to be the only case in which minimization of an optimal potential
reproduces the best binary vector. We conclude that an optimal potential saturating theRbb
bound withq → 1 cannot be constructed, in general. It motivates the search for alternative
methods in discrete optimization. The main issue is to find new ways to incorporate information
about the binary nature of the symmetry breaking vector, other then simply imposing the same
binary constraint in the solution space. An interesting approach would be to try to construct
a suitable potential for the continuous centre of massJB from which the best binary could be
obtained by clipping. Whether such an approach is possible will be answered in future work.

The authors would like to thank Nestor Caticha for useful discussions and the organizers of
the International Seminar on ‘Statistical Physics of Neural Networks’ (1999), held at the Max-
Planck Institut f̈ur Physik komplexer Systeme (Dresden), during which part of this work was
accomplished. We also acknowledge support from the FWO Vlaanderen and the Belgian IUAP
programme (Prime Minister’s Office).
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